977 lines
34 KiB
C#

using Ryujinx.Common.Memory;
using Ryujinx.Graphics.Gpu.Image;
using Ryujinx.Memory;
using Ryujinx.Memory.Range;
using System;
using System.Collections.Generic;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
namespace Ryujinx.Graphics.Gpu.Memory
{
/// <summary>
/// GPU memory manager.
/// </summary>
public class MemoryManager : IWritableBlock
{
private const int PtLvl0Bits = 14;
private const int PtLvl1Bits = 14;
public const int PtPageBits = 12;
private const ulong PtLvl0Size = 1UL << PtLvl0Bits;
private const ulong PtLvl1Size = 1UL << PtLvl1Bits;
public const ulong PageSize = 1UL << PtPageBits;
private const ulong PtLvl0Mask = PtLvl0Size - 1;
private const ulong PtLvl1Mask = PtLvl1Size - 1;
public const ulong PageMask = PageSize - 1;
private const int PtLvl0Bit = PtPageBits + PtLvl1Bits;
private const int PtLvl1Bit = PtPageBits;
private const int AddressSpaceBits = PtPageBits + PtLvl1Bits + PtLvl0Bits;
public const ulong PteUnmapped = ulong.MaxValue;
private readonly ulong[][] _pageTable;
public event EventHandler<UnmapEventArgs> MemoryUnmapped;
private readonly GpuContext _context;
private readonly List<PhysicalMemory> _physicalMemoryList;
private readonly Dictionary<PhysicalMemory, byte> _physicalMemoryMap;
/// <summary>
/// Virtual range cache.
/// </summary>
internal VirtualRangeCache VirtualRangeCache { get; }
/// <summary>
/// Cache of GPU counters.
/// </summary>
internal CounterCache CounterCache { get; }
/// <summary>
/// Creates a new instance of the GPU memory manager.
/// </summary>
/// <param name="context">GPU context</param>
/// <param name="physicalMemory">Physical memory that this memory manager will map into</param>
/// <param name="cpuMemorySize">The amount of physical CPU Memory Avaiable on the device.</param>
internal MemoryManager(GpuContext context, PhysicalMemory physicalMemory, ulong cpuMemorySize)
{
_context = context;
_physicalMemoryList = new List<PhysicalMemory>()
{
physicalMemory
};
_physicalMemoryMap = new Dictionary<PhysicalMemory, byte>
{
{ physicalMemory, 0 }
};
VirtualRangeCache = new VirtualRangeCache(this);
CounterCache = new CounterCache();
_pageTable = new ulong[PtLvl0Size][];
MemoryUnmapped += physicalMemory.TextureCache.MemoryUnmappedHandler;
MemoryUnmapped += physicalMemory.BufferCache.MemoryUnmappedHandler;
MemoryUnmapped += VirtualRangeCache.MemoryUnmappedHandler;
MemoryUnmapped += CounterCache.MemoryUnmappedHandler;
physicalMemory.TextureCache.Initialize(cpuMemorySize);
}
/// <summary>
/// Attaches the memory manager to a new GPU channel.
/// </summary>
/// <param name="rebind">Action to be performed when the buffer cache changes</param>
internal void AttachToChannel(Action rebind)
{
PhysicalMemory physicalMemory = GetOwnPhysicalMemory();
physicalMemory.IncrementReferenceCount();
physicalMemory.BufferCache.NotifyBuffersModified += rebind;
physicalMemory.BufferCache.QueuePrune();
}
/// <summary>
/// Attaches the memory manager to a new GPU channel.
/// </summary>
/// <param name="rebind">Action that was performed when the buffer cache changed</param>
internal void DetachFromChannel(Action rebind)
{
PhysicalMemory physicalMemory = GetOwnPhysicalMemory();
physicalMemory.BufferCache.NotifyBuffersModified -= rebind;
physicalMemory.DecrementReferenceCount();
}
/// <summary>
/// Queues a prune of invalid entries on the buffer cache.
/// </summary>
internal void QueuePrune()
{
GetOwnPhysicalMemory().BufferCache.QueuePrune();
}
/// <summary>
/// Reads data from GPU mapped memory.
/// </summary>
/// <typeparam name="T">Type of the data</typeparam>
/// <param name="va">GPU virtual address where the data is located</param>
/// <param name="tracked">True if read tracking is triggered on the memory region</param>
/// <returns>The data at the specified memory location</returns>
public T Read<T>(ulong va, bool tracked = false) where T : unmanaged
{
int size = Unsafe.SizeOf<T>();
if (IsContiguous(va, size))
{
(PhysicalMemory physicalMemory, ulong address) = TranslateWithPhysicalMemory(va);
if (tracked)
{
return physicalMemory.ReadTracked<T>(address);
}
else
{
return physicalMemory.Read<T>(address);
}
}
else
{
Span<byte> data = new byte[size];
ReadImpl(va, data, tracked);
return MemoryMarshal.Cast<byte, T>(data)[0];
}
}
/// <summary>
/// Gets a read-only span of data from GPU mapped memory.
/// </summary>
/// <param name="va">GPU virtual address where the data is located</param>
/// <param name="size">Size of the data</param>
/// <param name="tracked">True if read tracking is triggered on the span</param>
/// <returns>The span of the data at the specified memory location</returns>
public ReadOnlySpan<byte> GetSpan(ulong va, int size, bool tracked = false)
{
if (IsContiguous(va, size))
{
(PhysicalMemory physicalMemory, ulong address) = TranslateWithPhysicalMemory(va);
return physicalMemory.GetSpan(address, size, tracked);
}
else
{
Span<byte> data = new byte[size];
ReadImpl(va, data, tracked);
return data;
}
}
/// <summary>
/// Gets a read-only span of data from GPU mapped memory, up to the entire range specified,
/// or the last mapped page if the range is not fully mapped.
/// </summary>
/// <param name="va">GPU virtual address where the data is located</param>
/// <param name="size">Size of the data</param>
/// <param name="tracked">True if read tracking is triggered on the span</param>
/// <returns>The span of the data at the specified memory location</returns>
public ReadOnlySpan<byte> GetSpanMapped(ulong va, int size, bool tracked = false)
{
bool isContiguous = true;
int mappedSize;
if (ValidateAddress(va) && IsMappedOnGpuAndPhysical(va))
{
ulong endVa = va + (ulong)size;
ulong endVaAligned = (endVa + PageMask) & ~PageMask;
ulong currentVa = va & ~PageMask;
int pages = (int)((endVaAligned - currentVa) / PageSize);
for (int page = 0; page < pages - 1; page++)
{
ulong nextVa = currentVa + PageSize;
ulong nextPa = Translate(nextVa);
if (!ValidateAddress(nextVa) || !IsMappedOnGpuAndPhysical(nextVa))
{
break;
}
if (Translate(currentVa) + PageSize != nextPa)
{
isContiguous = false;
}
currentVa += PageSize;
}
currentVa += PageSize;
if (currentVa > endVa)
{
currentVa = endVa;
}
mappedSize = (int)(currentVa - va);
}
else
{
return ReadOnlySpan<byte>.Empty;
}
if (isContiguous)
{
(PhysicalMemory physicalMemory, ulong address) = TranslateWithPhysicalMemory(va);
return physicalMemory.GetSpan(address, mappedSize, tracked);
}
else
{
Span<byte> data = new byte[mappedSize];
ReadImpl(va, data, tracked);
return data;
}
}
/// <summary>
/// Checks if a page of memory is mapped on the GPU and its backing memory.
/// </summary>
/// <param name="va">GPU virtual address of the page</param>
/// <returns>True if mapped, false otherwise</returns>
private bool IsMappedOnGpuAndPhysical(ulong va)
{
(PhysicalMemory physicalMemory, ulong address) = TranslateWithPhysicalMemory(va);
if (address == PteUnmapped)
{
return false;
}
return physicalMemory.IsMapped(address);
}
/// <summary>
/// Reads data from a possibly non-contiguous region of GPU mapped memory.
/// </summary>
/// <param name="va">GPU virtual address of the data</param>
/// <param name="data">Span to write the read data into</param>
/// <param name="tracked">True to enable write tracking on read, false otherwise</param>
private void ReadImpl(ulong va, Span<byte> data, bool tracked)
{
if (data.Length == 0)
{
return;
}
int offset = 0, size;
if ((va & PageMask) != 0)
{
(PhysicalMemory physicalMemory, ulong pa) = TranslateWithPhysicalMemory(va);
size = Math.Min(data.Length, (int)PageSize - (int)(va & PageMask));
physicalMemory.GetSpan(pa, size, tracked).CopyTo(data[..size]);
offset += size;
}
for (; offset < data.Length; offset += size)
{
(PhysicalMemory physicalMemory, ulong pa) = TranslateWithPhysicalMemory(va + (ulong)offset);
size = Math.Min(data.Length - offset, (int)PageSize);
physicalMemory.GetSpan(pa, size, tracked).CopyTo(data.Slice(offset, size));
}
}
/// <summary>
/// Gets a writable region from GPU mapped memory.
/// </summary>
/// <param name="va">Start address of the range</param>
/// <param name="size">Size in bytes to be range</param>
/// <param name="tracked">True if write tracking is triggered on the span</param>
/// <returns>A writable region with the data at the specified memory location</returns>
public WritableRegion GetWritableRegion(ulong va, int size, bool tracked = false)
{
if (IsContiguous(va, size))
{
(PhysicalMemory physicalMemory, ulong address) = TranslateWithPhysicalMemory(va);
return physicalMemory.GetWritableRegion(address, size, tracked);
}
else
{
Memory<byte> memory = new byte[size];
GetSpan(va, size).CopyTo(memory.Span);
return new WritableRegion(this, va, memory, tracked);
}
}
/// <summary>
/// Writes data to GPU mapped memory.
/// </summary>
/// <typeparam name="T">Type of the data</typeparam>
/// <param name="va">GPU virtual address to write the value into</param>
/// <param name="value">The value to be written</param>
public void Write<T>(ulong va, T value) where T : unmanaged
{
Write(va, MemoryMarshal.Cast<T, byte>(MemoryMarshal.CreateSpan(ref value, 1)));
}
/// <summary>
/// Writes data to GPU mapped memory.
/// </summary>
/// <param name="va">GPU virtual address to write the data into</param>
/// <param name="data">The data to be written</param>
public void Write(ulong va, ReadOnlySpan<byte> data)
{
WriteImpl(va, data, (physical, va, data) => physical.Write(va, data));
}
/// <summary>
/// Writes data to GPU mapped memory, destined for a tracked resource.
/// </summary>
/// <param name="va">GPU virtual address to write the data into</param>
/// <param name="data">The data to be written</param>
public void WriteTrackedResource(ulong va, ReadOnlySpan<byte> data)
{
WriteImpl(va, data, (physical, va, data) => physical.WriteTrackedResource(va, data));
}
/// <summary>
/// Writes data to GPU mapped memory without write tracking.
/// </summary>
/// <param name="va">GPU virtual address to write the data into</param>
/// <param name="data">The data to be written</param>
public void WriteUntracked(ulong va, ReadOnlySpan<byte> data)
{
WriteImpl(va, data, (physical, va, data) => physical.WriteUntracked(va, data));
}
private delegate void WriteCallback(PhysicalMemory physicalMemory, ulong address, ReadOnlySpan<byte> data);
/// <summary>
/// Writes data to possibly non-contiguous GPU mapped memory.
/// </summary>
/// <param name="va">GPU virtual address of the region to write into</param>
/// <param name="data">Data to be written</param>
/// <param name="writeCallback">Write callback</param>
private void WriteImpl(ulong va, ReadOnlySpan<byte> data, WriteCallback writeCallback)
{
if (IsContiguous(va, data.Length))
{
(PhysicalMemory physicalMemory, ulong address) = TranslateWithPhysicalMemory(va);
writeCallback(physicalMemory, address, data);
}
else
{
int offset = 0, size;
if ((va & PageMask) != 0)
{
(PhysicalMemory physicalMemory, ulong pa) = TranslateWithPhysicalMemory(va);
size = Math.Min(data.Length, (int)PageSize - (int)(va & PageMask));
writeCallback(physicalMemory, pa, data[..size]);
offset += size;
}
for (; offset < data.Length; offset += size)
{
(PhysicalMemory physicalMemory, ulong pa) = TranslateWithPhysicalMemory(va + (ulong)offset);
size = Math.Min(data.Length - offset, (int)PageSize);
writeCallback(physicalMemory, pa, data.Slice(offset, size));
}
}
}
/// <summary>
/// Writes data to GPU mapped memory, stopping at the first unmapped page at the memory region, if any.
/// </summary>
/// <param name="va">GPU virtual address to write the data into</param>
/// <param name="data">The data to be written</param>
public void WriteMapped(ulong va, ReadOnlySpan<byte> data)
{
if (IsContiguous(va, data.Length))
{
(PhysicalMemory physicalMemory, ulong address) = TranslateWithPhysicalMemory(va);
physicalMemory.Write(address, data);
}
else
{
int offset = 0, size;
if ((va & PageMask) != 0)
{
(PhysicalMemory physicalMemory, ulong pa) = TranslateWithPhysicalMemory(va);
size = Math.Min(data.Length, (int)PageSize - (int)(va & PageMask));
if (pa != PteUnmapped && physicalMemory.IsMapped(pa))
{
physicalMemory.Write(pa, data[..size]);
}
offset += size;
}
for (; offset < data.Length; offset += size)
{
(PhysicalMemory physicalMemory, ulong pa) = TranslateWithPhysicalMemory(va + (ulong)offset);
size = Math.Min(data.Length - offset, (int)PageSize);
if (pa != PteUnmapped && physicalMemory.IsMapped(pa))
{
physicalMemory.Write(pa, data.Slice(offset, size));
}
}
}
}
/// <summary>
/// Runs remap actions that are added to an unmap event.
/// These must run after the mapping completes.
/// </summary>
/// <param name="e">Event with remap actions</param>
private static void RunRemapActions(UnmapEventArgs e)
{
if (e.RemapActions != null)
{
foreach (Action action in e.RemapActions)
{
action();
}
}
}
/// <summary>
/// Maps a given range of pages to the specified CPU virtual address.
/// </summary>
/// <remarks>
/// All addresses and sizes must be page aligned.
/// </remarks>
/// <param name="pa">CPU virtual address to map into</param>
/// <param name="va">GPU virtual address to be mapped</param>
/// <param name="size">Size in bytes of the mapping</param>
/// <param name="kind">Kind of the resource located at the mapping</param>
public void Map(ulong pa, ulong va, ulong size, PteKind kind)
{
MapImpl(pa, va, size, kind);
}
/// <summary>
/// Maps a given range of pages to the specified CPU virtual address from a different process.
/// </summary>
/// <remarks>
/// All addresses and sizes must be page aligned.
/// </remarks>
/// <param name="pa">CPU virtual address to map into</param>
/// <param name="va">GPU virtual address to be mapped</param>
/// <param name="size">Size in bytes of the mapping</param>
/// <param name="kind">Kind of the resource located at the mapping</param>
/// <param name="ownedPid">PID of the process that owns the mapping</param>
public void MapForeign(ulong pa, ulong va, ulong size, PteKind kind, ulong ownedPid)
{
if (_context.PhysicalMemoryRegistry.TryGetValue(ownedPid, out PhysicalMemory physicalMemory))
{
MapImpl(pa, va, size, kind, physicalMemory);
}
}
/// <summary>
/// Maps a given range of pages to the specified CPU virtual address.
/// </summary>
/// <remarks>
/// All addresses and sizes must be page aligned.
/// </remarks>
/// <param name="pa">CPU virtual address to map into</param>
/// <param name="va">GPU virtual address to be mapped</param>
/// <param name="size">Size in bytes of the mapping</param>
/// <param name="kind">Kind of the resource located at the mapping</param>
/// <param name="physicalMemory">Optional physical memory to import for the mapping</param>
private void MapImpl(ulong pa, ulong va, ulong size, PteKind kind, PhysicalMemory physicalMemory = null)
{
lock (_pageTable)
{
UnmapEventArgs e = new(va, size);
MemoryUnmapped?.Invoke(this, e);
byte pIndex = physicalMemory != null ? GetOrAddPhysicalMemory(physicalMemory) : (byte)0;
for (ulong offset = 0; offset < size; offset += PageSize)
{
SetPte(va + offset, PackPte(pa + offset, pIndex, kind));
}
RunRemapActions(e);
}
}
/// <summary>
/// Unmaps a given range of pages at the specified GPU virtual memory region.
/// </summary>
/// <param name="va">GPU virtual address to unmap</param>
/// <param name="size">Size in bytes of the region being unmapped</param>
public void Unmap(ulong va, ulong size)
{
lock (_pageTable)
{
// Event handlers are not expected to be thread safe.
UnmapEventArgs e = new(va, size);
MemoryUnmapped?.Invoke(this, e);
for (ulong offset = 0; offset < size; offset += PageSize)
{
SetPte(va + offset, PteUnmapped);
}
RunRemapActions(e);
}
}
/// <summary>
/// Checks if a region of GPU mapped memory is contiguous.
/// </summary>
/// <param name="va">GPU virtual address of the region</param>
/// <param name="size">Size of the region</param>
/// <returns>True if the region is contiguous, false otherwise</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private bool IsContiguous(ulong va, int size)
{
if (!ValidateAddress(va) || GetPte(va) == PteUnmapped)
{
return false;
}
ulong endVa = (va + (ulong)size + PageMask) & ~PageMask;
va &= ~PageMask;
int pages = (int)((endVa - va) / PageSize);
for (int page = 0; page < pages - 1; page++)
{
ulong nextPte = GetPte(va + PageSize);
if (!ValidateAddress(va + PageSize) || nextPte == PteUnmapped)
{
return false;
}
if (GetPte(va) + PageSize != nextPte)
{
return false;
}
va += PageSize;
}
return true;
}
/// <summary>
/// Gets the physical regions that make up the given virtual address region.
/// </summary>
/// <param name="va">Virtual address of the range</param>
/// <param name="size">Size of the range</param>
/// <returns>Multi-range with the physical regions</returns>
public MultiRange GetPhysicalRegions(ulong va, ulong size)
{
if (IsContiguous(va, (int)size))
{
return new MultiRange(Translate(va), size);
}
ulong regionStart = Translate(va);
ulong regionSize = Math.Min(size, PageSize - (va & PageMask));
ulong endVa = va + size;
ulong endVaRounded = (endVa + PageMask) & ~PageMask;
va &= ~PageMask;
int pages = (int)((endVaRounded - va) / PageSize);
List<MemoryRange> regions = new();
for (int page = 0; page < pages - 1; page++)
{
ulong currPa = Translate(va);
ulong newPa = Translate(va + PageSize);
if ((currPa != PteUnmapped || newPa != PteUnmapped) && currPa + PageSize != newPa)
{
regions.Add(new MemoryRange(regionStart, regionSize));
regionStart = newPa;
regionSize = 0;
}
va += PageSize;
regionSize += Math.Min(endVa - va, PageSize);
}
if (regions.Count == 0)
{
return new MultiRange(regionStart, regionSize);
}
regions.Add(new MemoryRange(regionStart, regionSize));
return new MultiRange(regions.ToArray());
}
/// <summary>
/// Checks if a given GPU virtual memory range is mapped to the same physical regions
/// as the specified physical memory multi-range.
/// </summary>
/// <param name="range">Physical memory multi-range</param>
/// <param name="va">GPU virtual memory address</param>
/// <returns>True if the virtual memory region is mapped into the specified physical one, false otherwise</returns>
public bool CompareRange(MultiRange range, ulong va)
{
va &= ~PageMask;
for (int i = 0; i < range.Count; i++)
{
MemoryRange currentRange = range.GetSubRange(i);
if (currentRange.Address != PteUnmapped)
{
ulong address = currentRange.Address & ~PageMask;
ulong endAddress = (currentRange.EndAddress + PageMask) & ~PageMask;
while (address < endAddress)
{
if (Translate(va) != address)
{
return false;
}
va += PageSize;
address += PageSize;
}
}
else
{
ulong endVa = va + (((currentRange.Size) + PageMask) & ~PageMask);
while (va < endVa)
{
if (Translate(va) != PteUnmapped)
{
return false;
}
va += PageSize;
}
}
}
return true;
}
/// <summary>
/// Gets the backing memory for a given GPU virtual address.
/// </summary>
/// <param name="va">GPU virtual address to get the backing memory from</param>
/// <returns>The backing memory for the specified GPU virtual address</returns>
internal PhysicalMemory GetBackingMemory(ulong va)
{
ulong pte = GetPte(va);
if (pte == PteUnmapped)
{
return GetOwnPhysicalMemory();
}
return _physicalMemoryList[UnpackPIndexFromPte(pte)];
}
/// <summary>
/// Gets the backing memory that is owned by this GPU memory manager.
/// </summary>
/// <returns>The backing memory owned by this memory manager</returns>
private PhysicalMemory GetOwnPhysicalMemory()
{
return _physicalMemoryList[0];
}
/// <summary>
/// Gets the index for a given physical memory on the list, adding it to the list if needed.
/// </summary>
/// <param name="physicalMemory">Physical memory to get the index from</param>
/// <returns>The index of the physical memory on the list</returns>
private byte GetOrAddPhysicalMemory(PhysicalMemory physicalMemory)
{
if (!_physicalMemoryMap.TryGetValue(physicalMemory, out byte pIndex))
{
pIndex = checked((byte)_physicalMemoryList.Count);
_physicalMemoryList.Add(physicalMemory);
_physicalMemoryMap.Add(physicalMemory, pIndex);
}
return pIndex;
}
/// <summary>
/// Validates a GPU virtual address.
/// </summary>
/// <param name="va">Address to validate</param>
/// <returns>True if the address is valid, false otherwise</returns>
private static bool ValidateAddress(ulong va)
{
return va < (1UL << AddressSpaceBits);
}
/// <summary>
/// Checks if a given page is mapped.
/// </summary>
/// <param name="va">GPU virtual address of the page to check</param>
/// <returns>True if the page is mapped, false otherwise</returns>
public bool IsMapped(ulong va)
{
return Translate(va) != PteUnmapped;
}
/// <summary>
/// Translates a GPU virtual address to a CPU virtual address.
/// </summary>
/// <param name="va">GPU virtual address to be translated</param>
/// <returns>CPU virtual address, or <see cref="PteUnmapped"/> if unmapped</returns>
public ulong Translate(ulong va)
{
if (!ValidateAddress(va))
{
return PteUnmapped;
}
ulong pte = GetPte(va);
if (pte == PteUnmapped)
{
return PteUnmapped;
}
return UnpackPaFromPte(pte) + (va & PageMask);
}
/// <summary>
/// Translates a GPU virtual address to a CPU virtual address on the first mapped page of memory
/// on the specified region.
/// If no page is mapped on the specified region, <see cref="PteUnmapped"/> is returned.
/// </summary>
/// <param name="va">GPU virtual address to be translated</param>
/// <param name="size">Size of the range to be translated</param>
/// <returns>CPU virtual address, or <see cref="PteUnmapped"/> if unmapped</returns>
public ulong TranslateFirstMapped(ulong va, ulong size)
{
if (!ValidateAddress(va))
{
return PteUnmapped;
}
ulong endVa = va + size;
ulong pte = GetPte(va);
for (; va < endVa && pte == PteUnmapped; va += PageSize - (va & PageMask))
{
pte = GetPte(va);
}
if (pte == PteUnmapped)
{
return PteUnmapped;
}
return UnpackPaFromPte(pte) + (va & PageMask);
}
/// <summary>
/// Translates a GPU virtual address and returns the number of bytes that are mapped after it.
/// </summary>
/// <param name="va">GPU virtual address to be translated</param>
/// <param name="maxSize">Maximum size in bytes to scan</param>
/// <returns>Number of bytes, 0 if unmapped</returns>
public ulong GetMappedSize(ulong va, ulong maxSize)
{
if (!ValidateAddress(va))
{
return 0;
}
ulong startVa = va;
ulong endVa = va + maxSize;
ulong pte = GetPte(va);
while (pte != PteUnmapped && va < endVa)
{
va += PageSize - (va & PageMask);
pte = GetPte(va);
}
return Math.Min(maxSize, va - startVa);
}
/// <summary>
/// Translates a GPU virtual address to a CPU virtual address and the associated physical memory.
/// </summary>
/// <param name="va">GPU virtual address to be translated</param>
/// <returns>CPU virtual address with the physical memory, or <see cref="PteUnmapped"/> if unmapped</returns>
private (PhysicalMemory, ulong) TranslateWithPhysicalMemory(ulong va)
{
if (!ValidateAddress(va))
{
return (GetOwnPhysicalMemory(), PteUnmapped);
}
ulong pte = GetPte(va);
if (pte == PteUnmapped)
{
return (GetOwnPhysicalMemory(), PteUnmapped);
}
return (_physicalMemoryList[UnpackPIndexFromPte(pte)], UnpackPaFromPte(pte) + (va & PageMask));
}
/// <summary>
/// Gets the kind of a given memory page.
/// This might indicate the type of resource that can be allocated on the page, and also texture tiling.
/// </summary>
/// <param name="va">GPU virtual address</param>
/// <returns>Kind of the memory page</returns>
public PteKind GetKind(ulong va)
{
if (!ValidateAddress(va))
{
return PteKind.Invalid;
}
ulong pte = GetPte(va);
if (pte == PteUnmapped)
{
return PteKind.Invalid;
}
return UnpackKindFromPte(pte);
}
public bool IsForeignMapping(ulong va)
{
ulong pte = GetPte(va);
if (pte == PteUnmapped)
{
return false;
}
return UnpackPIndexFromPte(pte) != 0;
}
/// <summary>
/// Gets the Page Table entry for a given GPU virtual address.
/// </summary>
/// <param name="va">GPU virtual address</param>
/// <returns>Page table entry (CPU virtual address)</returns>
private ulong GetPte(ulong va)
{
ulong l0 = (va >> PtLvl0Bit) & PtLvl0Mask;
ulong l1 = (va >> PtLvl1Bit) & PtLvl1Mask;
if (_pageTable[l0] == null)
{
return PteUnmapped;
}
return _pageTable[l0][l1];
}
/// <summary>
/// Sets a Page Table entry at a given GPU virtual address.
/// </summary>
/// <param name="va">GPU virtual address</param>
/// <param name="pte">Page table entry (CPU virtual address)</param>
private void SetPte(ulong va, ulong pte)
{
ulong l0 = (va >> PtLvl0Bit) & PtLvl0Mask;
ulong l1 = (va >> PtLvl1Bit) & PtLvl1Mask;
if (_pageTable[l0] == null)
{
_pageTable[l0] = new ulong[PtLvl1Size];
for (ulong index = 0; index < PtLvl1Size; index++)
{
_pageTable[l0][index] = PteUnmapped;
}
}
_pageTable[l0][l1] = pte;
}
/// <summary>
/// Creates a page table entry from a physical address and kind.
/// </summary>
/// <param name="pa">Physical address</param>
/// <param name="pIndex">Index of the physical memory on the list</param>
/// <param name="kind">Kind</param>
/// <returns>Page table entry</returns>
private static ulong PackPte(ulong pa, byte pIndex, PteKind kind)
{
return pa | ((ulong)pIndex << 48) | ((ulong)kind << 56);
}
/// <summary>
/// Unpacks kind from a page table entry.
/// </summary>
/// <param name="pte">Page table entry</param>
/// <returns>Kind</returns>
private static PteKind UnpackKindFromPte(ulong pte)
{
return (PteKind)(pte >> 56);
}
/// <summary>
/// Unpacks the physical memory index in the list from a page table entry.
/// </summary>
/// <param name="pte">Page table entry</param>
/// <returns>Physical memory index</returns>
private static byte UnpackPIndexFromPte(ulong pte)
{
return (byte)(pte >> 48);
}
/// <summary>
/// Unpacks physical address from a page table entry.
/// </summary>
/// <param name="pte">Page table entry</param>
/// <returns>Physical address</returns>
private static ulong UnpackPaFromPte(ulong pte)
{
return pte & 0xffffffffffffUL;
}
}
}